Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Anaerobe ; 85: 102820, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309618

RESUMO

OBJECTIVES: Methanogenic archaea are a minor component of human oral microbiota. Due to their relatively low abundance, the detection of these neglected microorganisms is challenging. This study concerns the presence of methanogens in salivary samples collected from Tunisian adults to evaluate their prevalence and burden using a polyphasic molecular approach. METHODS: A total of 43 saliva samples were included. Metagenomic and standard 16S rRNA sequencing were performed as an initial screening to detect the presence of methanogens in the oral microbiota of Tunisian adults. Further investigations were performed using specific quantitative real-time PCR targeting Methanobrevibacter oralis and Methanobrevibacter smithii. RESULTS: Methanobrevibacter was detected in 5/43 (11.62 %) saliva samples after metagenomic 16S rRNA data analysis. The presence of M. oralis was confirmed in 6/43 samples by standard 16S rRNA sequencing. Using real-time PCR, methanogens were detected in 35/43 (81.39 %) samples, including 62.79 % positive for M. oralis and 76.74 % positive for M. smithii. These findings reflect the high prevalence of both methanogens, revealed by the high sensitivity of the real-time PCR approach. Interestingly, we also noted a significant statistical association between the detection of M. smithii and poor adherence to a Mediterranean diet, indicating the impact of diet on M. smithii prevalence. CONCLUSION: Our study showed the presence of methanogens in the oral microbiota of Tunisian adults with an unprecedented relatively high prevalence. Choice of methodology is also central to picturing the real prevalence and diversity of such minor taxa in the oral microbiota.


Assuntos
Microbiota , Saliva , Adulto , Humanos , RNA Ribossômico 16S/genética , Methanobrevibacter/genética , Archaea/genética
2.
Sci Rep ; 13(1): 21192, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040895

RESUMO

The human gut microbiota is a complex ecosystem that affects a range of human physiology. In order to explore the dynamics of the human gut microbiota, we used a system of ordinary differential equations to model mathematically the biomass of three microorganism populations: Bacteroides thetaiotaomicron, Eubacterium rectale, and Methanobrevibacter smithii. Additionally, we modeled the concentrations of relevant nutrients necessary to sustain these populations over time. Our model highlights the interactions and the competition among these three species. These three microorganisms were specifically chosen due to the system's end product, butyrate, which is a short chain fatty acid that aids in developing and maintaining the intestinal barrier in the human gut. The basis of our mathematical model assumes the gut is structured such that bacteria and nutrients exit the gut at a rate proportional to its volume, the rate of volumetric flow, and the biomass or concentration of the particular population or nutrient. We performed global sensitivity analyses using Sobol' sensitivities to estimate the relative importance of model parameters on simulation results.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Eubacterium , Methanobrevibacter , Ecossistema , Bacteroides , Modelos Teóricos
3.
Gut Microbes ; 15(2): 2261784, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37753963

RESUMO

Methanogens, reductive acetogens and sulfate-reducing bacteria play an important role in disposing of hydrogen in gut ecosystems. However, how they interact with each other remains largely unknown. This in vitro study cocultured Blautia hydrogenotrophica (reductive acetogen), Desulfovibrio piger (sulfate reducer) and Methanobrevibacter smithii (methanogen). Results revealed that these three species coexisted and did not compete for hydrogen in the early phase of incubations. Sulfate reduction was not affected by B. hydrogenotrophica and M. smithii. D. piger inhibited the growth of B. hydrogenotrophica and M. smithii after 10 h incubations, and the inhibition on M. smithii was associated with increased sulfide concentration. Remarkably, M. smithii growth lag phase was shortened by coculturing with B. hydrogenotrophica and D. piger. Formate was rapidly used by M. smithii under high acetate concentration. Overall, these findings indicated that the interactions of the hydrogenotrophic microbes are condition-dependent, suggesting their interactions may vary in gut ecosystems.


Assuntos
Microbioma Gastrointestinal , Methanobrevibacter , Methanobrevibacter/fisiologia , Ecossistema , Hidrogênio , Sulfatos
4.
Microb Pathog ; 180: 106160, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37217120

RESUMO

Non-alcoholic fatty liver (NAFLD), and its complicated form, non-alcoholic steatohepatitis (NASH), have been associated with gut dysbiosis with specific signatures. Endogenous ethanol production by Klebsiella pneumoniae or yeasts has been identified as a potential physio-pathological mechanism. A species-specific association between Lactobacillus and obesity and metabolic diseases has been reported. In this study, the microbial composition of ten cases of NASH and ten controls was determined using v3v4 16S amplicon sequencing as well as quantitative PCR (qPCR). Using different statistical approaches, we found an association of Lactobacillus and Lactoccocus with NASH, and an association of Methanobrevibacter, Faecalibacterium and Romboutsia with controls. At the species level, Limosilactobacillus fermentum and Lactococcus lactis, two species producing ethanol, and Thomasclavelia ramosa, a species already associated with dysbiosis, were associated with NASH. Using qPCR, we observed a decreased frequency of Methanobrevibacter smithii and confirmed the high prevalence of L. fermentum in NASH samples (5/10), while all control samples were negative (p = 0.02). In contrast, Ligilactobacillus ruminis was associated with controls. This supports the critical importance of taxonomic resolution at the species level, notably with the recent taxonomic reclassification of the Lactobacillus genus. Our results point towards the potential instrumental role of ethanol-producing gut microbes in NASH patients, notably lactic acid bacteria, opening new avenues for prevention and treatment.


Assuntos
Lactococcus lactis , Limosilactobacillus fermentum , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Methanobrevibacter/genética , Lactococcus lactis/metabolismo , Disbiose/microbiologia , Etanol
5.
J Microbiol Methods ; 207: 106704, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907565

RESUMO

Methanobrevibacter smithii (M. smithii), the most prevalent and abundant gut methanogen, detoxifies hydrogen into methane and is, therefore, of paramount importance for the equilibrium of the gut microbiota. The isolation by culture of M. smithii has routinely relied upon hydrogen­carbon dioxide-enriched, oxygen-deprived atmospheres. In this study, we developed a medium referred to as "GG", which allowed for M. smithii growth and isolation by culture in an oxygen-deprived atmosphere, with no supply of either hydrogen or carbon dioxide, making it easier to detect M. smithii by culture in clinical microbiology laboratories.


Assuntos
Microbioma Gastrointestinal , Methanobrevibacter , Dióxido de Carbono , Bactérias Anaeróbias , Hidrogênio
6.
Anaerobe ; 77: 102629, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985606

RESUMO

Archaea comprise a unique domain of organisms with distinct biochemical and genetic differences from bacteria. Methane-forming archaea, methanogens, constitute the predominant group of archaea in the human gut microbiota, with Methanobrevibacter smithii being the most prevalent. However, the effect of methanogenic archaea and their methane production on chronic disease remains controversial. As perturbation of the microbiota is a feature of chronic conditions, such as cardiovascular disease, neurodegenerative diseases and chronic kidney disease, assessing the influence of archaea could provide a new clue to mitigating adverse effects associated with dysbiosis. In this review, we will discuss the putative role of archaea in the gut microbiota in humans and the possible link to chronic diseases.


Assuntos
Euryarchaeota , Microbioma Gastrointestinal , Humanos , Archaea/genética , Methanobrevibacter/genética , Metano , Doença Crônica
7.
Microbiol Spectr ; 10(4): e0084922, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35699469

RESUMO

Methanogenic Archaea (methanogens) are a phylogenetically diverse group of microorganisms and are considered to be the most abundant archaeal representatives in the human gut. However, the gut methanogen diversity of human populations in many global regions remains poorly investigated. Here, we report the abundance and diversity of gut methanogenic Archaea in a multi-ethnic cohort of healthy Singaporeans by using a concerted approach of metagenomic sequencing, 16S rRNA gene amplicon sequencing, and quantitative PCR. Our results indicate a mutual exclusion of Methanobrevibacter species, i.e., the highly prevalent Methanobrevibacter smithii and the less prevalent Candidatus Methanobrevibacter intestini in more than 80% of the samples when using an amplicon sequencing-based approach. Leveraging on this finding, we were able to select a fecal sample to isolate a representative strain, TLL-48-HuF1, for Candidatus Methanobrevibacter intestini. The analyzed physiological parameters of M. smithii DSM 861T and strain TLL-48-HuF1 suggest high similarity of the two species. Comparative genome analysis and the mutual exclusion of the Methanobrevibacter species indicate potentially different niche adaptation strategies in the human host, which may support the designation of Candidatus M. intestini as a novel species. IMPORTANCE Methanogens are important hydrogen consumers in the gut and are associated with differing host health. Here, we determine the prevalence and abundance of archaeal species in the guts of a multi-ethnic cohort of healthy Singapore residents. While Methanobrevibacter smithii is the most prevalent and abundant methanogen in the human gut of local subjects, the recently proposed Candidatus Methanobrevibacter intestini is the abundant methanogen in a minority of individuals that harbor them. The observed potential mutual exclusion of M. smithii and Ca. M. intestini provides further support to the proposal that the two physiologically similar strains may belong to different Methanobrevibacter species.


Assuntos
Microbioma Gastrointestinal , Methanobrevibacter , Fezes , Humanos , Metagenômica , Methanobrevibacter/genética , RNA Ribossômico 16S/genética
8.
Nat Commun ; 13(1): 3358, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688919

RESUMO

Archaea are common constituents of the gut microbiome of humans, ruminants, and termites but little is known about their diversity and abundance in other animals. Here, we analyse sequencing and quantification data of archaeal and bacterial 16S rRNA genes from 250 species of animals covering a large taxonomic spectrum. We detect the presence of archaea in 175 animal species belonging to invertebrates, fish, amphibians, birds, reptiles and mammals. We identify five dominant gut lineages, corresponding to Methanobrevibacter, Methanosphaera, Methanocorpusculum, Methanimicrococcus and "Ca. Methanomethylophilaceae". Some archaeal clades, notably within Methanobrevibacter, are associated to certain hosts, suggesting specific adaptations. The non-methanogenic lineage Nitrososphaeraceae (Thaumarchaeota) is frequently present in animal samples, although at low abundance, but may have also adapted to the gut environment. Host phylogeny, diet type, fibre content, and intestinal tract physiology are major drivers of the diversity and abundance of the archaeome in mammals. The overall abundance of archaea is more influenced by these factors than that of bacteria. Methanogens reducing methyl-compounds with H2 can represent an important fraction of the overall methanogens in many animals. Together with CO2-reducing methanogens, they are influenced by diet and composition of gut bacteria. Our results provide key elements toward our understanding of the ecology of archaea in the gut, an emerging and important field of investigation.


Assuntos
Archaea , Euryarchaeota , Animais , Archaea/genética , Bactérias/genética , Fibras na Dieta , Euryarchaeota/genética , Mamíferos/genética , Methanobacteriaceae , Methanobrevibacter/genética , Filogenia , RNA Ribossômico 16S/genética
9.
Sci Rep ; 12(1): 10394, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729277

RESUMO

In silico prediction of epitopes is a potentially time-saving alternative to experimental epitope identification but is often subject to misidentification of epitopes and may not be useful for proteins from archaeal microorganisms. In this study, we mapped B- and T-cell epitopes of a model antigen from the methanogen Methanobrevibacter ruminantium M1, the Big_1 domain (AdLP-D1, amino acids 19-198) of an adhesin-like protein. A series of 17 overlapping 20-mer peptides was selected to cover the Big_1 domain. Peptide-specific antibodies were produced in mice and measured by ELISA, while an in vitro splenocyte re-stimulation assay determined specific T-cell responses. Overall, five peptides of the 17 peptides were shown to be major immunogenic epitopes of AdLP-D1. These immunogenic regions were examined for their localization in a homology-based model of AdLP-D1. Validated epitopes were found in the outside region of the protein, with loop like secondary structures reflecting their flexibility. The empirical data were compared with epitope predictions made by programmes based on a range of algorithms. In general, the epitopes identified by in silico predictions were not comparable to those determined empirically.


Assuntos
Adesinas Bacterianas , Methanobrevibacter , Adesinas Bacterianas/metabolismo , Algoritmos , Animais , Mapeamento de Epitopos , Epitopos de Linfócito T , Methanobrevibacter/metabolismo , Camundongos , Peptídeos/metabolismo
10.
Microbiol Spectr ; 10(3): e0106722, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35536023

RESUMO

Trophic interactions between microbes are postulated to determine whether a host microbiome is healthy or causes predisposition to disease. Two abundant taxa, the Gram-negative heterotrophic bacterium Bacteroides thetaiotaomicron and the methanogenic archaeon Methanobrevibacter smithii, are proposed to have a synergistic metabolic relationship. Both organisms play vital roles in human gut health; B. thetaiotaomicron assists the host by fermenting dietary polysaccharides, whereas M. smithii consumes end-stage fermentation products and is hypothesized to relieve feedback inhibition of upstream microbes such as B. thetaiotaomicron. To study their metabolic interactions, we defined and optimized a coculture system and used software testing techniques to analyze growth under a range of conditions representing the nutrient environment of the host. We verify that B. thetaiotaomicron fermentation products are sufficient for M. smithii growth and that accumulation of fermentation products alters secretion of metabolites by B. thetaiotaomicron to benefit M. smithii. Studies suggest that B. thetaiotaomicron metabolic efficiency is greater in the absence of fermentation products or in the presence of M. smithii. Under certain conditions, B. thetaiotaomicron and M. smithii form interspecies granules consistent with behavior observed for syntrophic partnerships between microbes in soil or sediment enrichments and anaerobic digesters. Furthermore, when vitamin B12, hematin, and hydrogen gas are abundant, coculture growth is greater than the sum of growth observed for monocultures, suggesting that both organisms benefit from a synergistic mutual metabolic relationship. IMPORTANCE The human gut functions through a complex system of interactions between the host human tissue and the microbes which inhabit it. These diverse interactions are difficult to model or examine under controlled laboratory conditions. We studied the interactions between two dominant human gut microbes, B. thetaiotaomicron and M. smithii, using a seven-component culturing approach that allows the systematic examination of the metabolic complexity of this binary microbial system. By combining high-throughput methods with machine learning techniques, we were able to investigate the interactions between two dominant genera of the gut microbiome in a wide variety of environmental conditions. Our approach can be broadly applied to studying microbial interactions and may be extended to evaluate and curate computational metabolic models. The software tools developed for this study are available as user-friendly tutorials in the Department of Energy KBase.


Assuntos
Microbioma Gastrointestinal , Methanobrevibacter , Bacteroides/metabolismo , Fermentação , Humanos , Methanobrevibacter/metabolismo , Interações Microbianas
11.
Anaerobe ; 72: 102470, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34743984

RESUMO

The aetiology of appendicular abscess is predominantly microbial with aerobic and anaerobic bacteria from gut flora. In this study, by using specific laboratory tools, we co-detected Methanobrevibacter oralis and Methanobrevibacter smithii among a mixture of enterobacteria including Escherichia coli, Enterococcus faecium and Enterococcus avium in four unrelated cases of postoperative appendiceal abscesses. These unprecedented observations raise a question on the role of methanogens in peri-appendicular abscesses, supporting antibiotics as an alternative therapeutic option for appendicitis, including antibiotics active against methanogens such as metronidazole or fusidic acid.


Assuntos
Abscesso/diagnóstico , Abscesso/microbiologia , Apendicite/complicações , Methanobrevibacter/classificação , Abscesso/tratamento farmacológico , Adolescente , Adulto , Antibacterianos/uso terapêutico , Apendicite/diagnóstico , Apendicite/tratamento farmacológico , Hemocultura , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Methanobrevibacter/genética , Methanobrevibacter/isolamento & purificação , Methanobrevibacter/ultraestrutura , Pessoa de Meia-Idade , Tipagem Molecular , RNA Ribossômico 16S/genética , Tomografia Computadorizada por Raios X , Adulto Jovem
12.
Archaea ; 2021: 5510063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776791

RESUMO

BACKGROUND: Methane emissions from agriculture are responsible for over 40% of the world's greenhouse gas emissions. In the past, antibiotics were used to control methane production by animals, but concerns over the emergence and spread of antibiotic-resistant bacteria to humans have prompted a search for alternative approaches. Hops are the flowers of the hop plant Humulus lupulus. They have been used to feed cattle for many years and are known to contain antibacterial compounds, and their extracts have been shown to kill members of the Mycobacterium spp including Mycobacterium bovis, the causative agent of bovine tuberculosis as well as a number of human pathogens. In this study, hop extracts were studied for their ability to inhibit methane production from Methanobrevibacter ruminantium, a major methane-producing archaeon found in the rumen of cattle. METHODS: Methanobrevibacter ruminantium M1T (DSM 1093) was grown at 37°C for 30 days, and the amount of methane produced at different time points during this period was measured using gas chromatography. The archaeon was exposed to commercial hop extracts (tetra-hydro-iso-alpha acid and beta acid) and to aqueous hop extracts of a range of hop variants, and their effect on methane production was determined. RESULTS: All of the extracts reduced the level of methane production of M. ruminantium over the 30-day period compared to the negative control (sterile distilled water). The commercial hop extracts were the most effective at inhibiting methane production over the course of the experiment in contrast to the aqueous extracts, which showed a gradual reduction of inhibition with time. CONCLUSIONS: Hops contain compounds which inhibit methane production. Given that hops can be safely fed to cattle, this raises the possibility of rationally designing a feed strategy which could reduce greenhouse gas emissions and protect against bovine tuberculosis. This study recommends that further research be undertaken to further identifying bioactive components from hops and their efficacy against a range of archaea.


Assuntos
Gases de Efeito Estufa , Humulus , Tuberculose Bovina , Animais , Antibacterianos/farmacologia , Archaea , Bovinos , Humulus/química , Metano , Methanobrevibacter , Rúmen/microbiologia
13.
Microbiome ; 9(1): 197, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593021

RESUMO

BACKGROUND: Dental calculus (mineralised dental plaque) preserves many types of microfossils and biomolecules, including microbial and host DNA, and ancient calculus are thus an important source of information regarding our ancestral human oral microbiome. In this study, we taxonomically characterised the dental calculus microbiome from 20 ancient human skeletal remains originating from Trentino-South Tyrol, Italy, dating from the Neolithic (6000-3500 BCE) to the Early Middle Ages (400-1000 CE). RESULTS: We found a high abundance of the archaeal genus Methanobrevibacter in the calculus. However, only a fraction of the sequences showed high similarity to Methanobrevibacter oralis, the only described Methanobrevibacter species in the human oral microbiome so far. To further investigate the diversity of this genus, we used de novo metagenome assembly to reconstruct 11 Methanobrevibacter genomes from the ancient calculus samples. Besides the presence of M. oralis in one of the samples, our phylogenetic analysis revealed two hitherto uncharacterised and unnamed oral Methanobrevibacter species that are prevalent in ancient calculus samples sampled from a broad range of geographical locations and time periods. CONCLUSIONS: We have shown the potential of using de novo metagenomic assembly on ancient samples to explore microbial diversity and evolution. Our study suggests that there has been a possible shift in the human oral microbiome member Methanobrevibacter over the last millennia. Video abstract.


Assuntos
Archaea , Metagenoma , Archaea/genética , Cálculos Dentários , Humanos , Methanobrevibacter/genética , Pessoa de Meia-Idade , Filogenia
14.
Microbiome ; 9(1): 193, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560884

RESUMO

BACKGROUND: Methane is an end product of microbial fermentation in the human gastrointestinal tract. This gas is solely produced by an archaeal subpopulation of the human microbiome. Increased methane production has been associated with abdominal pain, bloating, constipation, IBD, CRC or other conditions. Twenty percent of the (healthy) Western populations innately exhale substantially higher amounts (>5 ppm) of this gas. The underlying principle for differential methane emission and its effect on human health is not sufficiently understood. RESULTS: We assessed the breath methane content, the gastrointestinal microbiome, its function and metabolome, and dietary intake of one-hundred healthy young adults (female: n = 52, male: n = 48; mean age =24.1). On the basis of the amount of methane emitted, participants were grouped into high methane emitters (CH4 breath content 5-75 ppm) and low emitters (CH4 < 5 ppm). The microbiomes of high methane emitters were characterized by a 1000-fold increase in Methanobrevibacter smithii. This archaeon co-occurred with a bacterial community specialized on dietary fibre degradation, which included members of Ruminococcaceae and Christensenellaceae. As confirmed by metagenomics and metabolomics, the biology of high methane producers was further characterized by increased formate and acetate levels in the gut. These metabolites were strongly correlated with dietary habits, such as vitamin, fat and fibre intake, and microbiome function, altogether driving archaeal methanogenesis. CONCLUSIONS: This study enlightens the complex, multi-level interplay of host diet, genetics and microbiome composition/function leading to two fundamentally different gastrointestinal phenotypes and identifies novel points of therapeutic action in methane-associated disorders. Video Abstract.


Assuntos
Metano , Methanobrevibacter , Adulto , Animais , Feminino , Formiatos , Trato Gastrointestinal , Humanos , Masculino , Metagenômica , Methanobrevibacter/genética , Rúmen , Adulto Jovem
15.
Nat Commun ; 12(1): 3214, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088904

RESUMO

Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.


Assuntos
Proteínas Arqueais/metabolismo , Divisão Celular/fisiologia , Methanobrevibacter/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo Celular , Divisão Celular/genética , Sequência Conservada , Cristalografia por Raios X , Evolução Molecular , Methanobrevibacter/genética , Methanobrevibacter/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
16.
Nature ; 594(7862): 234-239, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33981035

RESUMO

Loss of gut microbial diversity1-6 in industrial populations is associated with chronic diseases7, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000-2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Evolução Biológica , Fezes/microbiologia , Microbioma Gastrointestinal , Genoma Bacteriano/genética , Interações entre Hospedeiro e Microrganismos , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Doença Crônica , Países Desenvolvidos , Países em Desenvolvimento , Dieta Ocidental , História Antiga , Humanos , Desenvolvimento Industrial/tendências , Methanobrevibacter/classificação , Methanobrevibacter/genética , Methanobrevibacter/isolamento & purificação , México , Comportamento Sedentário , Sudoeste dos Estados Unidos , Especificidade da Espécie , Simbiose
17.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805783

RESUMO

In anaerobic bioreactors, the electrons produced during the oxidation of organic matter can potentially be used for the biological reduction of pharmaceuticals in wastewaters. Common electron transfer limitations benefit from the acceleration of reactions through utilization of redox mediators (RM). This work explores the potential of carbon nanomaterials (CNM) as RM on the anaerobic removal of ciprofloxacin (CIP). Pristine and tailored carbon nanotubes (CNT) were first tested for chemical reduction of CIP, and pristine CNT was found as the best material, so it was further utilized in biological anaerobic assays with anaerobic granular sludge (GS). In addition, magnetic CNT were prepared and also tested in biological assays, as they are easier to be recovered and reused. In biological tests with CNM, approximately 99% CIP removal was achieved, and the reaction rates increased ≈1.5-fold relatively to the control without CNM. In these experiments, CIP adsorption onto GS and CNM was above 90%. Despite, after applying three successive cycles of CIP addition, the catalytic properties of magnetic CNT were maintained while adsorption decreased to 29 ± 3.2%, as the result of CNM overload by CIP. The results suggest the combined occurrence of different mechanisms for CIP removal: adsorption on GS and/or CNM, and biological reduction or oxidation, which can be accelerated by the presence of CNM. After biological treatment with CNM, toxicity towards Vibrio fischeri was evaluated, resulting in ≈ 46% detoxification of CIP solution, showing the advantages of combining biological treatment with CNM for CIP removal.


Assuntos
Ciprofloxacina/metabolismo , Elétrons , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Adsorção , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/crescimento & desenvolvimento , Anaerobiose/fisiologia , Biodegradação Ambiental , Reatores Biológicos , Ciprofloxacina/isolamento & purificação , Humanos , Nanopartículas de Magnetita/ultraestrutura , Methanobacterium/metabolismo , Methanobrevibacter/metabolismo , Methanosarcinales/metabolismo , Methanospirillum/metabolismo , Testes de Sensibilidade Microbiana , Nanotubos de Carbono/ultraestrutura , Oxirredução , Poluentes Químicos da Água/isolamento & purificação
18.
J Therm Biol ; 97: 102897, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863450

RESUMO

The objective of this study was to evaluate the effect of heat stress on meta-taxonomic and metabolic profiles of prokaryotes in beef cattle rumen. Six pure-breed Nellore heifers with ruminal cannulas were used in the study. Six treatments were tested in a 6 × 6 Latin Square with six periods of 21days. The treatments were evaluated in a 2 × 2 + 2 factorial arrangement, consisting of 4 combinations: two temperatures conditions (thermoneutral, TN: 24 °C; and heat stress, HS: 34 °C) and two dietary energy concentration [low-energy (37% non-fibrous carbohydrates - NFC, 12 Mcal of metabolizable energy per kg of dry matter) or high-energy concentration (50.5% NFC, 18.49 Mcal of metabolizable energy per kg of dry matter)] plus two additional treatments with animals maintained in TN conditions but with your intake restricted (TN-RI) to the same of the heifers in HS with the two dietary energy concentration. The meta-genome was sequenced by MiSeq Sequencing System platform, and the DNA sequences were analysed using Geneious 10.2.3 software. The metabolic profile was evaluated by liquid and gas chromatography. Animals under HS presented lower (P = 0.04) prokaryote richness than animals under TN conditions. The genera Flavonifractor (1.4%), Treponema (0.6%) and Ruminococcus (0.9%) showed the lowest (P < 0.04) and Carnobacterium (7.7%) the highest (P = 0.02) relative abundance when the animals were submitted to HS, in relation to animals in TN. A total of 49 different metabolites were identified in the ruminal samples. The concentration of isobutyric acid (4.32 mM) was highest in bovine rumen under HS conditions. Heat stress influenced the microbiota and concentration of some organic acids in beef cattle rumen. There was a reduction in the richness of rumen in cattle under heat stress, but the diversity of prokaryotes was not affected.


Assuntos
Ácidos Carboxílicos/metabolismo , Microbiota , Rúmen/metabolismo , Rúmen/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Doenças dos Bovinos/microbiologia , Feminino , Transtornos de Estresse por Calor/microbiologia , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Umidade , Methanobrevibacter/genética , Methanobrevibacter/isolamento & purificação , RNA Ribossômico 16S/genética , Temperatura
19.
Sci Rep ; 11(1): 5426, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686095

RESUMO

Gut microbial dysbiosis has been shown to be an instrumental factor in severe acute malnutrition (SAM) and particularly, the absence of Methanobrevibacter smithii, a key player in energy harvest. Nevertheless, it remains unknown whether this absence reflects an immaturity or a loss of the microbiota. In order to assess that, we performed a case-control study in Mali using a propensity score weighting approach. The presence of M. smithii was tested using quantitative PCR on faeces collected from SAM children at inclusion and at discharge when possible or at day 15 for controls. M. smithii was highly significantly associated with the absence of SAM, detected in 40.9% controls but only in 4.2% cases (p < 0.0001). The predictive positive value for detection of M. smithii gradually increased with age in controls while decreasing in cases. Among children providing two samples with a negative first sample, no SAM children became positive, while this proportion was 2/4 in controls (p = 0.0015). This data suggests that gut dysbiosis in SAM is not an immaturity but rather features a loss of M. smithii. The addition of M. smithii as a probiotic may thus represent an important addition to therapeutic approaches to restore gut symbiosis.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Methanobrevibacter , Desnutrição Aguda Grave/microbiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Disbiose/genética , Disbiose/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mali , Methanobrevibacter/genética , Methanobrevibacter/crescimento & desenvolvimento , Desnutrição Aguda Grave/genética
20.
Animal ; 15(1): 100060, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33516013

RESUMO

The greenhouse gases (GHGs) derived from agriculture include carbon dioxide, nitrous oxide, and methane (CH4). Of these GHGs, CH4, in particular, constitutes a major component of the GHG emitted by the agricultural sector. Along with environmental concerns, CH4 emission also leads to losses in gross energy intake with economic implications. While ruminants are considered the main source of CH4 from agriculture, nonruminant animals also contribute substantially, and the CH4 emission intensity of nonruminants remains comparable to that of ruminants. Means of mitigating CH4 emissions from enteric fermentation have therefore been sought. Methane is produced by methanogens-archaeal microorganisms that inhabit the digestive tracts of animals and participate in fermentation processes. As the diversity of methanogen communities is thought to be responsible for the differences in CH4 production among nonruminant animals, it is necessary to investigate the archaeal composition of specific animal species. Methanogens play an important role in energy metabolism and adipose tissue deposition in animals. Higher abundances of methanogens, along with their higher diversity, have been reported to contribute to lean phenotype in pigs. In particular, a greater abundance of Methanosphaera spp. and early dominance of Methanobrevibacter smithii have been reported to correlate with lower body fat formation in pigs. Besides the contribution of methanogens to the metabolic phenotype of their hosts, CH4 release reduces the productivity that could be achieved through other hydrogen (H2) disposal pathways. Enhanced participation of acetogenesis in H2 disposal, leading to acetate formation, could be a more favorable direction for animal production and the environment. Better knowledge and understanding of the archaeal communities of the gastrointestinal tract (GIT), including their metabolism and interactions with other microorganisms, would thus allow the development of new strategies for inhibiting methanogens and shifting toward acetogenesis. There are a variety of approaches to inhibiting methanogens and mitigating methanogenesis in ruminants, which can find an application for nonruminants, such as nutritional changes through supplementation with biologically active compounds and management changes. We summarize the available reports and provide a comprehensive review of methanogens living in the GIT of various nonruminants, such as swine, horses, donkeys, rabbits, and poultry. This review will help in a better understanding of the populations and diversity of methanogens and the implications of their presence in nonruminant animals.


Assuntos
Animais Domésticos , Rúmen , Animais , Cavalos , Metano , Methanobrevibacter , Coelhos , Ruminantes , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...